library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(DT)
## Warning: package 'DT' was built under R version 4.4.3
CB_Stats <- read.csv("CB_Rankings.csv")
CB_Stats <- CB_Stats %>%
arrange(rank) %>%
mutate(pos_rank_bef = row_number())
datatable(CB_Stats)
mean(CB_Stats$man_grade)
## [1] 67.32414
mean(CB_Stats$zone_grade)
## [1] 75.21379
mean(CB_Stats$comp)
## [1] 53.64138
mean(CB_Stats$passer_rating)
## [1] 67.54828
mean(CB_Stats$missp)
## [1] 11.12069
get_cb_values <- function(input_df) {
df_cb_copy <- input_df %>% mutate(
man_grade = round(pmax(pmin((man_grade-50) / 4, 10), 0), 2), # 50-90, mean 70
zone_grade = round(pmax(pmin((zone_grade-50) / 4, 10), 0), 2), # 50-90, mean 70
comp = round(pmax(pmin(((100-comp)-25)/4, 10), 0), 2), # 75-35, mean 55
passer_rating = round(pmax(pmin(((200-passer_rating)-100)/7, 10), 0), 2), # 100-30, mean 70
missp = round(pmax(pmin(((100-missp)-80)/1.5, 10), 0), 2), # 20-5, mean 12.5
)
return(df_cb_copy)
}
new_stats_cb <- get_cb_values(CB_Stats) %>%
mutate(total = rowSums(select(., -player, -adp, -rank, -pos_rank_bef, -team))) %>%
arrange(-total) %>%
mutate(pos = "CB", pos_rank_aft = row_number(), pos_rank_diff = pos_rank_bef-pos_rank_aft) %>%
select(player, man_grade, zone_grade, comp, passer_rating, missp, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(new_stats_cb)
get the dataset that only contains the total and the ranks
cb_stats_total <- new_stats_cb %>%
select(player, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(cb_stats_total)
write.csv(cb_stats_total, "cb_stats_total.csv", row.names = FALSE)