library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(DT)
## Warning: package 'DT' was built under R version 4.4.3
DL_Stats <- read.csv("DL_Rankings.csv") %>%
arrange(rank) %>%
mutate(pos_rank_bef = row_number())
datatable(DL_Stats)
mean(DL_Stats$pass_grade)
## [1] 71.08056
mean(DL_Stats$run_grade)
## [1] 76.72222
mean(DL_Stats$pass_win)
## [1] 9.622222
mean(DL_Stats$run_stop)
## [1] 7.175
mean(DL_Stats$prp)
## [1] 5.241667
get_dl_values <- function(input_df) {
df_dl_copy <- input_df %>% mutate(
pass_grade = round(pmax(pmin((pass_grade-60) / 2, 10), 0), 2), # 60-80, mean 70
run_grade = round(pmax(pmin((run_grade-60) / 3, 10), 0), 2), # 60-90, mean 75
pass_win = round(pmax(pmin((pass_win-4)*1.25, 10), 0), 2), # 4-12, mean 8
run_stop = round(pmax(pmin((run_stop-4)*1.67, 10), 0), 2), # 4-10, mean 7
prp = round(pmax(pmin((prp-3)*2.5, 10), 0), 2), # 3-7, mean 5
)
return(df_dl_copy)
}
new_stats_dl <- get_dl_values(DL_Stats) %>%
mutate(total = rowSums(select(., -player, -adp, -rank, -pos_rank_bef, -team))) %>%
arrange(-total) %>%
mutate(pos = "DL", pos_rank_aft = row_number(), pos_rank_diff = pos_rank_bef-pos_rank_aft) %>%
select(player, pass_grade, run_grade, pass_win, run_stop, prp, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(new_stats_dl)
get the dataset that only contains the total and the ranks
dl_stats_total <- new_stats_dl %>%
select(player, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(dl_stats_total)
write.csv(dl_stats_total, "dl_stats_total.csv", row.names = FALSE)