library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(DT)
## Warning: package 'DT' was built under R version 4.4.3
ED_Stats <- read.csv("ED_Rankings.csv") %>%
arrange(rank) %>%
mutate(pos_rank_bef = row_number())
datatable(ED_Stats)
mean(ED_Stats$pass_grade)
## [1] 81.96316
mean(ED_Stats$run_grade)
## [1] 76.64474
mean(ED_Stats$pass_win)
## [1] 16.94211
mean(ED_Stats$run_stop)
## [1] 6.836842
mean(ED_Stats$prp)
## [1] 9.197368
get_ed_values <- function(input_df) {
df_ed_copy <- input_df %>% mutate(
pass_grade = round(pmax(pmin((pass_grade-70) / 2, 10), 0), 2), # 70-90, mean 80
run_grade = round(pmax(pmin((run_grade-65) / 2, 10), 0), 2), # 65-85, mean 75
pass_win = round(pmax(pmin((pass_win-10), 10), 0), 2), # 10-20, mean 15
run_stop = round(pmax(pmin((run_stop-4)*2, 10), 0), 2), # 4-9, mean 6.5
prp = round(pmax(pmin((prp-6)*1.67, 10), 0), 2), # 6-12, mean 9
)
return(df_ed_copy)
}
new_stats_ed <- get_ed_values(ED_Stats) %>%
mutate(total = rowSums(select(., -player, -adp, -rank, -pos_rank_bef, -team))) %>%
arrange(-total) %>%
mutate(pos = "ED", pos_rank_aft = row_number(), pos_rank_diff = pos_rank_bef-pos_rank_aft) %>%
select(player, pass_grade, run_grade, pass_win, run_stop, prp, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(new_stats_ed)
get the dataset that only contains the total and the ranks
ed_stats_total <- new_stats_ed %>%
select(player, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(ed_stats_total)
write.csv(ed_stats_total, "ed_stats_total.csv", row.names = FALSE)