library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(DT)
## Warning: package 'DT' was built under R version 4.4.3
LB_Stats <- read.csv("LB_Rankings.csv") %>%
arrange(rank) %>%
mutate(pos_rank_bef = row_number())
datatable(LB_Stats)
mean(LB_Stats$pass_grade)
## [1] 72.79615
mean(LB_Stats$run_grade)
## [1] 77.35
mean(LB_Stats$cov_grade)
## [1] 66.81538
mean(LB_Stats$missp)
## [1] 10.91923
mean(LB_Stats$passer_rating)
## [1] 95.49231
get_lb_values <- function(input_df) {
df_lb_copy <- input_df %>% mutate(
pass_grade = round(pmax(pmin((pass_grade-60) / 2.5, 10), 0), 2), # 60-85, mean 72.5
run_grade = round(pmax(pmin((run_grade-65) / 2, 10), 0), 2), # 65-85, mean 75
cov_grade = round(pmax(pmin((cov_grade-50) / 3, 10), 0), 2), # 50-80, mean 65
missp = round(pmax(pmin(((100-missp)-83) / 1.2, 10), 0), 2), # 17-5, mean 11
passer_rating = round(pmax(pmin(((200-passer_rating)-80) / 5, 10), 0), 2), # 120-70, mean 95
)
return(df_lb_copy)
}
new_stats_lb <- get_lb_values(LB_Stats) %>%
mutate(total = rowSums(select(., -player, -adp, -rank, -team, -pos_rank_bef))) %>%
arrange(-total) %>%
mutate(pos = "LB", pos_rank_aft = row_number(), pos_rank_diff = pos_rank_bef-pos_rank_aft) %>%
select(player, pass_grade, run_grade, cov_grade, missp, passer_rating, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(new_stats_lb)
get the dataset that only contains the total and the ranks
lb_stats_total <- new_stats_lb %>%
select(player, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(lb_stats_total)
write.csv(lb_stats_total, "lb_stats_total.csv", row.names = FALSE)