library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(DT)
## Warning: package 'DT' was built under R version 4.4.3
OT_Stats <- read.csv("OT_Rankings.csv") %>%
arrange(rank) %>%
mutate(pos_rank_bef = row_number())
datatable(OT_Stats)
mean(OT_Stats$rb_grade)
## [1] 73.6375
mean(OT_Stats$pb_grade)
## [1] 80.24375
mean(OT_Stats$zone_grade)
## [1] 75.5
mean(OT_Stats$gap_grade)
## [1] 65.44688
mean(OT_Stats$pbe)
## [1] 96.6625
get_ot_values <- function(input_df) {
df_ot_copy <- input_df %>% mutate(
rb_grade = round(pmax(pmin((rb_grade-65) / 2, 10), 0), 2), # 65-85, mean 75
pb_grade = round(pmax(pmin((pb_grade-65) / 2, 10), 0), 2), # 65-85, mean 75
zone_grade = round(pmax(pmin((zone_grade-65) / 2, 10), 0), 2), # 65-85, mean 75
gap_grade = round(pmax(pmin((gap_grade-55) / 2, 10), 0), 2), # 55-75, mean 65
pbe = round(pmax(pmin((pbe-93) * 1.67, 10), 0), 2), # 93-99, mean 96
)
return(df_ot_copy)
}
new_stats_ot <- get_ot_values(OT_Stats) %>%
mutate(total = rowSums(select(., -player, -adp, -rank, -pos_rank_bef, -team))) %>%
arrange(-total) %>%
mutate(pos = "OT", pos_rank_aft = row_number(), pos_rank_diff = pos_rank_bef-pos_rank_aft) %>%
select(player, rb_grade, pb_grade, zone_grade, gap_grade, pbe, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(new_stats_ot)
get the dataset that only contains the total and the ranks
ot_stats_total <- new_stats_ot %>%
select(player, total, rank, pos, team, pos_rank_bef, pos_rank_aft, pos_rank_diff)
datatable(ot_stats_total)
write.csv(ot_stats_total, "ot_stats_total.csv", row.names = FALSE)